

Test Report No.: 690900-IRS B2 Test Report Date: December 2020

ASTM F3016-19 EVALUATION OF SLOWSTOP® BOLLARD

by

James C. Kovar Assistant Research Scientist

Wanda L. Menges Research Specialist

William Schroeder Research Engineering Associate

Bill L. Griffith Research Specialist

and

Darrell L. Kuhn, P.E. Research Specialist

Contract No.: 2004494 **Test Nos.**: 690900-IRS B2 **Test Date**: 2020-10-26

Sponsored by Impact Recovery Systems, Inc.[®]

TEXAS A&M TRANSPORTATION INSTITUTE PROVING GROUND

Mailing Address: TTI Proving Ground Roadside Safety & Physical Security 3135 TAMU College Station, TX 77843-3135 Located at: Texas A&M University System RELLIS Campus Building 7091 1254 Avenue A Bryan, TX 77807

DISCLAIMER

The contents of this report reflect the views of the authors, who are solely responsible for the facts and accuracy of the data, and the opinions, findings, and conclusions presented herein. The contents do not necessarily reflect the official views or policies of Impact Recovery Systems, Inc.[®], The Texas A&M University System, or Texas A&M Transportation Institute. This report does not constitute a standard, specification, or regulation. In addition, the above listed agencies/ companies assume no liability for its contents or use thereof. The names of specific products or manufacturers listed herein do not imply endorsement of those products or manufacturers.

The results reported herein apply only to the article tested. The full-scale crash tests were performed according to TTI Proving Ground quality procedures and according to the *ASTM F3016* guidelines and standards.

The Proving Ground Laboratory within the Texas A&M Transportation Institute's Roadside Safety and Physical Security Division ("TTI Lab" or "TTI LAB") strives for accuracy and completeness in its crash test reports. On rare occasions, unintentional or inadvertent clerical errors, technical errors, omissions, oversights, or misunderstandings (collectively referred to as "errors") may occur and may not be identified for corrective action prior to the final report being published and issued. If, and when, the TTI Lab discovers an error in a published and issued final report, the TTI Lab shall promptly disclose such error to Impact Recovery Systems, Inc.[®], and both parties shall endeavor in good faith to resolve this situation. The TTI Lab will be responsible for correcting the error that occurred in the report, which may be in form of errata, amendment, replacement sections, or up to and including full reissuance of the report. The cost of correcting an error in the report shall be borne by TTI Lab. Any such errors or inadvertent delays that occur in connection with the performance of the related testing contract shall not constitute a breach of the testing contract.

THE TTI LAB SHALL NOT BE LIABLE FOR ANY INDIRECT, CONSEQUENTIAL, PUNITIVE, OR OTHER DAMAGES SUFFERED BY IMPACT RECOVERY SYSTEMS, INC.[®] OR ANY OTHER PERSON OR ENTITY, WHETHER SUCH LIABILITY IS BASED, OR CLAIMED TO BE BASED, UPON ANY NEGLIGENT ACT, OMISSION, ERROR, CORRECTION OF ERROR, DELAY, OR BREACH OF AN OBLIGATION BY THE TTI LAB.

		Technical Report Documentation Page
1. Report No.	2. Government Accession No.	3. Recipient's Catalog No.
4. Title and Subtitle		5. Report Date
ASTM F3016-19 EVALUATI	ON OF SLOWSTOP [®] BOLLARDS	December 2020
		6. Performing Organization Code
7. Author(s)		8. Performing Organization Report No.
James C. Kovar, Wanda L. Mer		Test Report No. 690900-IRS B2
Bill L. Griffith, and Darrell L. K	Kuhn	
9. Performing Organization Name and Address		10. Work Unit No. (TRAIS)
Texas A&M Transportation Ins	titute Proving Ground	
3135 TAMU		11. Contract or Grant No.
College Station, Texas 77843-3	135	2004494
12. Sponsoring Agency Name and Address		13. Type of Report and Period Covered
Impact Recovery Systems, Inc.	0	Test Report:
4955 Stout Drive		May – December 2020
San Antonio, TX 78219		14. Sponsoring Agency Code
15. Supplementary Notes	2016 Testing floor 4 December 2016	
-	3016 Testing of Impact Recovery System	is SlowStop [®] Bollards
Name of Contacting Representa	tive: Kenneth Parrott	
16. Abstract		
-	were performed and evaluated in accor	
•	gate Testing of Vehicle Impact Protectiv	-
5	TM F3016-19 tests reported herein was to	-
manufactured by Impact Recov	erv Systems. Inc [®] is canable of arresting	y a 5000-lb surrogate test vehicle

manufactured by Impact Recovery Systems, Inc.[®] is capable of arresting a 5000-lb surrogate test vehicle according to Condition Designations/Penetration Ratings of *ASTM F3016-19*. This report presents the construction details of the SlowStop[®] Bollard and respective foundation, details of the surrogate test vehicle used in the tests, details of the tests performed, and the assessment of each of the test results.

ASTM F3016-19 provides a range of Condition Designations and Penetration Ratings that allow agencies to select protective devices that satisfy their specific facility needs. The amount of dynamic penetration of the protective device or surrogate test vehicle at the required impact velocity determines the dynamic Penetration Rating for each Condition Designation.

During the S10 test, the maximum penetration of the vehicle was 9.8 inches, and the maximum dynamic penetration of the bollard was 12.6 inches. According to *ASTM F3016-19*, the bollard design met the Condition Designation/Penetration Rating of S10-P2, which allows penetration of 1-4 ft when impacted by the surrogate test vehicle at an impact speed of 9.0-18.9 mi/h.

17. Key Words		18. Distribution Statement		
vehicle impact protective device; impact; crash		Copyrighted. Not to be copied or reprinted without		
testing; bollard		consent from Impact Recovery Systems, Inc. [®]		
19. Security Classif.(of this report) Unclassified	20. Security Classif.(of th Unclassified	is page)	21. No. of Pages 40	22. Price

Form DOT F 1700.7 (8-72)

Reproduction of completed page authorized

REPORT AUTHORIZATION

REPORT REVIEWED BY:

Glenn Schroeder, Research Specialist
Drafting, Evaluation and ReportingKen Reeves, Research Specialist
Electronics InstrumentationGary Gerke, Research Specialist
Construction SectionRichard Badillo, Research Specialist
Photographic InstrumentationScott Dobrovolny, Research Specialist
Mechanical InstrumentationWanda L. Menges, Research Specialist
Evaluation and Reporting

Bill L. Griffith, Research Specialist Deputy Quality Manager Darrell L. Kuhn, P.E., Research Specialist Quality Manager

Matt Robinson, Senior Research Specialist Test Facility Manager & Technical Manager James C. Kovar Assistant Research Scientist

TABLE OF CONTENTS

Section

REPOR	RT AUTHORIZATION	iv
1. IN7	TRODUCTION	1
1.1	BACKGROUND	
1.3	OBJECTIVES/SCOPE OF RESEARCH	
2. TE	EST CONDITIONS AND EVALUATION CRITERIA	3
2.1	TEST FACILITY	3
2.1	TEST PROCEDURES	3
2.2	TEST CONDITIONS	-
2.5	SURROGATE TEST VEHICLE	4
2.6	EVALUATION CRITERIA	4
3 TE	EST ARTICLE DESIGN	
3.1	TEST ARTICLE – DESIGN AND CONSTRUCTION	7
3.2	MATERIAL SPECIFICATIONS	
4 <i>AS</i> 2	STM F3016-19 TEST S10 ON SLOWSTOP® BOLLARD (TEST NO. 690900-E	RS
B2) 11		
4.1	TARGET TEST CONDITIONS	
4.2	WEATHER CONDITIONS	
4.3	IMPACT DESCRIPTION	
4.4	DAMAGE TO TEST ARTICLE	
4.5	VEHICLE DAMAGE	
4.6	OCCUPANT RISK FACTORS	
5 SU	JMMARY AND CONCLUSIONS	
5.1		
	TM F3016-19 Test S10 on SlowStop® Bollard (Test No. 690900-IRS B2)	17
5.2		
	RENCES	
APPEN	NDIX A. CRASH TEST PROCEDURES AND DATA ANALYSIS	21
A.1	ELECTRONIC INSTRUMENTATION AND DATA PROCESSING	
A.2	PHOTOGRAPHIC INSTRUMENTATION AND DATA PROCESSING	
A.3	TEST VEHICLE PROPULSION AND GUIDANCE	
APPEN		
	NDIX F. ASTM F3016-19 TEST S10 ON SLOWSTOP® BOLLARD	
F.1	SEQUENTIAL PHOTOGRAPHS	
F.3.	VEHICLE ACCELERATIONS	38

LIST OF FIGURES

Page

Figure 2.1.	Test Vehicle prior to Testing.	4
Figure 3.1.	General Layout of SlowStop® Bollard.	8
Figure 3.2.	SlowStop® Bollard prior to Testing	9
Figure 4.1.	Bogie and Installation Geometrics for Test No. 690900-IRS B2	.11
Figure 4.2.	Installation after Test No. 690900-IRS B2.	12
Figure 4.3.	Vehicle after Test No. 690900-IRS B2	13
Figure 4.4.	Summary of Results for ASTM F3016-19 Test S10 on SlowStop® Bollard	15
Figure F.1.	Sequential Photographs for Test No. 690900-IRS B2	35
-	(Perpendicular View)	35
Figure F.2.	Sequential Photographs for Test No. 690900-IRS B2	36
	(Overhead and Frontal Views)	
Figure F.3.	Vehicle Longitudinal Accelerometer Trace for Test No. 690900-IRS B2	
-	(Accelerometer Located at Center of Gravity).	38
Figure F.4.	Vehicle Lateral Accelerometer Trace for Test No. 690900-IRS B2 (Accelerometer	eter
	Located near Center of Gravity).	39
Figure F.5.	Vehicle Vertical Accelerometer Trace for Test No. 690900-IRS B2	
	(Accelerometer Located near Center of Gravity	40

LIST OF TABLES

Page

Table 2.1.	Impact Condition Designations According to ASTM F3016-19	4
Table 2.2.	Penetration Ratings According to ASTM F3016-19.	5
Table 4.1.	Events during Test No. 690900-IRS B2.	12
Table 4.2.	Deformation of Honeycomb Nose after Test No. 690900-IRS B2	
Table B.1.	Vehicle Properties for ASTM F3016-19 Surrogate Bogie Vehicle	23

SI* (MODERN METRIC) CONVERSION FACTORS				
APPROXIMATE CONVERSTIONS TO SI UNITS				
Symbol	When You Know	Multiply By	To Find	Symbol
		LENGTH		
in	inches	25.4	millimeters	mm
ft	feet	0.305	meters	m
yd	yards	0.914	meters	m
mi	miles	1.61	kilometers	km
		AREA		
in ²	square inches	645.2	square millimeters	mm ²
ft ²	square feet	0.093	square meters	m ²
yd²	square yards	0.836	square meters	m²
ac	acres	0.405	hectares	ha
mi ²	square miles	2.59	square kilometers	km²
		VOLUME	· ·	
fl oz	fluid ounces	29.57	milliliters	mL
gal	gallons	3.785	liters	L
ft ³	cubic feet	0.028	cubic meters	m ³
yd ³	cubic yards	0.765	cubic meters	m ³
	NOTE: volu	mes greater than 1000L	. shall be shown in m ³	
		MASS		
oz	ounces	28.35	grams	g
lb	pounds	0.454	kilograms	kg
Т	short tons (2000 lb)	0.907	megagrams (or metric ton")	Mg (or "t")
	TE	MPERATURE (exac	t degrees)	
°F	Fahrenheit	5(F-32)/9	Celsius	°C
		or (F-32)/1.8		
	FOR	CE and PRESSURE	or STRESS	
16.5				
lbf	poundforce	4.45	newtons	Ν
lbf lbf/in ²	poundforce poundforce per square incl		newtons kilopascals	N kPa
	poundforce per square incl		kilopascals	
lbf/in ²	poundforce per square incl APPROXIN	n 6.89 IATE CONVERSTIOI	kilopascals SFROM SI UNITS	kPa
	poundforce per square incl	n 6.89 IATE CONVERSTIOI Multiply By	kilopascals	
lbf/in ² Symbol	poundforce per square incl APPROXIN When You Know	n 6.89 IATE CONVERSTIO Multiply By LENGTH	kilopascals NS FROM SI UNITS To Find	kPa
lbf/in ² Symbol mm	poundforce per square incl APPROXIN When You Know millimeters	n 6.89 IATE CONVERSTIOI Multiply By LENGTH 0.039	kilopascals NS FROM SI UNITS To Find inches	kPa Symbol
Ibf/in ² Symbol mm m	poundforce per square incl APPROXIN When You Know	n 6.89 IATE CONVERSTION Multiply By LENGTH 0.039 3.28	kilopascals NS FROM SI UNITS To Find inches feet	kPa Symbol in ft
lbf/in ² Symbol mm	poundforce per square incl APPROXIN When You Know millimeters meters	n 6.89 IATE CONVERSTIOI Multiply By LENGTH 0.039	kilopascals NS FROM SI UNITS To Find inches	kPa Symbol
Ibf/in ² Symbol mm m m	poundforce per square incl APPROXIN When You Know millimeters meters meters meters	n 6.89 IATE CONVERSTION Multiply By LENGTH 0.039 3.28 1.09 0.621	kilopascals NS FROM SI UNITS To Find inches feet yards	kPa Symbol in ft yd
Ibf/in ² Symbol mm m m km	poundforce per square incl APPROXIN When You Know millimeters meters meters kilometers	n 6.89 IATE CONVERSTION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA	kilopascals NS FROM SI UNITS To Find inches feet yards miles	kPa Symbol in ft yd mi
Ibf/in ² Symbol mm m km mm ²	poundforce per square incl APPROXIN When You Know millimeters meters meters kilometers square millimeters	n 6.89 IATE CONVERSTION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016	kilopascals NS FROM SI UNITS To Find inches feet yards miles square inches	kPa Symbol in ft yd mi in ²
Ibf/in ² Symbol mm m km mm ² m ²	poundforce per square incl APPROXIN When You Know millimeters meters meters kilometers square millimeters square meters	n 6.89 IATE CONVERSTION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA	kilopascals NS FROM SI UNITS To Find inches feet yards miles square inches square feet	kPa Symbol in ft yd mi in ² ft ²
Ibf/in ² Symbol mm m km mm ²	poundforce per square incl APPROXIN When You Know millimeters meters kilometers square millimeters square meters square meters square meters	n 6.89 IATE CONVERSTION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195	kilopascals NS FROM SI UNITS To Find inches feet yards miles square inches	kPa Symbol in ft yd mi in ²
Ibf/in ² Symbol mm m km km mm ² m ² m ²	poundforce per square incl APPROXIN When You Know millimeters meters meters kilometers square millimeters square meters	n 6.89 IATE CONVERSTIO Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764	kilopascals NS FROM SI UNITS To Find inches feet yards miles square inches square feet square yards	kPa Symbol in ft yd mi in ² ft ² yd ²
Ibf/in ² Symbol mm m km mm ² m ² ha	poundforce per square incl APPROXIN When You Know millimeters meters kilometers square millimeters square meters square meters hectares	n 6.89 IATE CONVERSTIO Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47	kilopascals NS FROM SI UNITS To Find inches feet yards miles square inches square feet square yards acres	kPa Symbol in ft yd mi in ² ft ² yd ² ac
Ibf/in ² Symbol mm m km mm ² m ² ha	poundforce per square incl APPROXIN When You Know millimeters meters kilometers square millimeters square meters square meters hectares	n 6.89 IATE CONVERSTION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386	kilopascals NS FROM SI UNITS To Find inches feet yards miles square inches square feet square yards acres	kPa Symbol in ft yd mi in ² ft ² yd ² ac
Ibf/in ² Symbol mm m km km mm ² m ² ha km ²	poundforce per square incl APPROXIN When You Know millimeters meters meters kilometers square millimeters square meters square kilometers	n 6.89 IATE CONVERSTIO Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME	kilopascals NS FROM SI UNITS To Find inches feet yards miles square inches square feet square yards acres square miles	kPa Symbol in ft yd mi in ² ft ² yd ² ac mi ²
Ibf/in ² Symbol mm m km mm ² m ² ha km ² mL	poundforce per square incl APPROXIN When You Know millimeters meters meters kilometers square millimeters square meters hectares Square kilometers milliliters	6.89 IATE CONVERSTIO Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034	kilopascals NS FROM SI UNITS To Find inches feet yards miles square inches square feet square yards acres square miles fluid ounces	kPa Symbol in ft yd mi in ² ft ² yd ² ac mi ² oz
Ibf/in ² Symbol mm m km km ² m ² ha km ² ha km ²	poundforce per square incl APPROXIN When You Know millimeters meters meters kilometers square millimeters square meters square meters square meters square meters square meters square meters hectares Square kilometers milliliters liters	n 6.89 IATE CONVERSTIO Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264	kilopascals NS FROM SI UNITS To Find inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons	kPa Symbol in ft yd mi in ² ft ² yd ² ac mi ² oz gal
Ibf/in ² Symbol mm m km km ² m ² ha km ² ha km ² mL L m ³	poundforce per square incl APPROXIN When You Know millimeters meters meters kilometers square millimeters square meters hectares Square kilometers milliliters liters cubic meters	n 6.89 IATE CONVERSTIO Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.034 0.264 35.314	kilopascals NS FROM SI UNITS To Find inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet	kPa Symbol in ft yd mi in ² ft ² yd ² ac mi ² oz gal ft ³
Ibf/in ² Symbol mm m km km mm ² m ² ha km ² mL L m ³ m ³	poundforce per square incl APPROXIN When You Know millimeters meters meters kilometers square millimeters square meters hectares Square kilometers milliliters liters cubic meters	6.89 IATE CONVERSTIO Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307	kilopascals NS FROM SI UNITS To Find inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet	kPa Symbol in ft yd mi in ² ft ² yd ² ac mi ² oz gal ft ³
Ibf/in ² Symbol mm m km km ² m ² ha km ² ha km ² mL L m ³	poundforce per square incl APPROXIN When You Know millimeters meters meters kilometers square millimeters square meters square meters hectares Square kilometers milliliters liters cubic meters cubic meters	6.89 IATE CONVERSTIO Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS	kilopascals NS FROM SI UNITS To Find inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards	kPa Symbol in ft yd mi in ² ft ² yd ² ac mi ² oz gal ft ³ yd ³
Ibf/in ² Symbol mm m m km mm ² m ² ha km ² mL L m ³ m ³ g	poundforce per square incl APPROXIN When You Know millimeters meters meters kilometers square millimeters square meters square meters hectares Square kilometers milliliters liters cubic meters cubic meters grams	6.89 IATE CONVERSTIO Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202	kilopascals NS FROM SI UNITS To Find inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards ounces ounces	kPa Symbol in ft yd mi in ² ft ² yd ² ac mi ² oz gal ft ³ yd ³ oz
Ibf/in ² Symbol mm m m km m ² m ² ha km ² mL L m ³ m ³ g kg	poundforce per square incl APPROXIN When You Know millimeters meters meters kilometers square millimeters square meters square meters hectares Square kilometers milliliters liters cubic meters cubic meters grams kilograms megagrams (or "metric ton	6.89 IATE CONVERSTIO Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202 ")	kilopascals NS FROM SI UNITS To Find inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards ounces pounds short tons (2000lb)	kPa Symbol in ft yd mi in ² ft ² yd ² ac mi ² oz gal ft ³ yd ³ oz lb
Ibf/in ² Symbol mm m km mm ² m ² ha km ² mL L m ³ m ³ m ³	poundforce per square incl APPROXIN When You Know millimeters meters meters kilometers square millimeters square meters hectares Square kilometers milliliters liters cubic meters grams kilograms megagrams (or "metric ton	n 6.89 IATE CONVERSTIO Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202 ") 1.103 EMPERATURE (exact	kilopascals NS FROM SI UNITS To Find inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards ounces pounds short tons (2000lb) t degrees)	kPa Symbol in ft yd mi in ² ft ² yd ² ac mi ² oz gal ft ³ yd ³ oz lb
Ibf/in ² Symbol mm m m km m ² m ² ha km ² mL L m ³ m ³ g kg	poundforce per square incl APPROXIN When You Know millimeters meters meters kilometers square millimeters square meters square kilometers milliliters liters cubic meters grams kilograms megagrams (or "metric ton The celsius	n 6.89 IATE CONVERSTIO Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202 ") 1.103 EMPERATURE (exact 1.8C+32	kilopascals NS FROM SI UNITS To Find inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards ounces pounds short tons (2000lb) t degrees) Fahrenheit	kPa Symbol in ft yd mi in ² ft ² yd ² ac mi ² oz gal ft ³ yd ³ oz lb T
Ibf/in ² Symbol mm m m km mm ² m ² ha km ² m ² ha km ² m ² ha kg ² m ³ m ³ g kg (or "t")	poundforce per square incl APPROXIN When You Know millimeters meters meters kilometers square millimeters square meters square meters hectares Square kilometers Square kilometers cubic meters cubic meters cubic meters cubic meters cubic meters cubic meters cubic meters for metric ton	n 6.89 IATE CONVERSTIO Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202 ") 1.103 EMPERATURE (exacc 1.8C+32 CE and PRESSURE	kilopascals NS FROM SI UNITS To Find inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards ounces pounds short tons (2000lb) t degrees) Fahrenheit or STRESS	kPa Symbol in ft yd mi in ² ft ² yd ² ac mi ² oz gal ft ³ yd ³ oz lb T °F
Ibf/in ² Symbol mm m km mm ² m ² ha km ² mL L m ³ m ³ m ³	poundforce per square incl APPROXIN When You Know millimeters meters meters kilometers square millimeters square meters square kilometers milliliters liters cubic meters grams kilograms megagrams (or "metric ton The celsius	n 6.89 IATE CONVERSTIO Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202 ") 1.103 EMPERATURE (exact 1.8C+32	kilopascals NS FROM SI UNITS To Find inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards ounces pounds short tons (2000lb) t degrees) Fahrenheit	kPa Symbol in ft yd mi in ² ft ² yd ² ac mi ² oz gal ft ³ yd ³ oz lb T

*SI is the symbol for the International System of Units. Appropriate rounding should be made to comply with Section 4 of ASTM E380. (Revised March 2003)

1. INTRODUCTION

1.1 BACKGROUND

The test reported herein was performed and evaluated in accordance with *ATSM F3016-*19, Standard Test Method for Surrogate Testing of Vehicle Impact Protective Devices at Low Speeds (1).

1.3 OBJECTIVES/SCOPE OF RESEARCH

The objective of the *ASTM F3016-19* test reported herein was to determine if the SlowStop[®] Bollard manufactured by Impact Recovery Systems, Inc.[®] is capable of arresting a 5000-lb surrogate test vehicle according to Condition Designations/Penetration Ratings of *ASTM F3016-19*. This report presents the construction details of the SlowStop[®] Bollard, and respective foundation, details of the surrogate test vehicle used in the test, details of the test performed, and the assessment of each of the test results.

2. TEST CONDITIONS AND EVALUATION CRITERIA

2.1 TEST FACILITY

The full-scale crash test reported herein was performed at Texas A&M Transportation Institute (TTI) Proving Ground. TTI Proving Ground is an International Standards Organization (ISO) / International Electromechanical Commission (IEC) 17025 accredited laboratory with American Association for Laboratory Accreditation (A2LA) Mechanical Testing certificate 2821.01. The full-scale crash test was performed according to TTI Proving Ground quality procedures developed for ISO/IEC 17025 accreditation and according to the *ASTM F3016-19* guidelines and standards.

The test facilities at the Texas A&M Transportation Institute's Proving Ground consist of a 2000-acre complex of research and training facilities situated 10 miles northwest of the main campus of Texas A&M University. The site, formerly an Army Air Corps base, has large expanses of concrete runways and parking aprons well suited for experimental research and testing in the areas of vehicle performance and handling, vehicle-roadway interaction, durability and efficacy of highway pavements, and evaluation of roadside safety hardware and perimeter protective devices. The site selected for installation of the SlowStop[®] Bollard was between two sections of an out-of-service apron. The apron consists of an unreinforced jointed concrete pavement in 12.5 ft \times 15 ft blocks nominally 6-8 inches deep. The aprons were built in 1942, and the joints have some displacement, but are otherwise flat and level.

2.1 TEST PROCEDURES

The test reported herein was performed in accordance with *ASTM F3016-19*. Appendix A presents a brief description of the procedures followed for each test.

2.2 TEST CONDITIONS

According to *ASTM F3016-19*, SlowStop[®] Bollard can be rated according to one of three impact condition designations when tested with a surrogate test vehicle, as shown in Table 2.1. The test conditions establish a range for penetration performance ratings, which may be used to identify appropriate penetration performance for specific needs of the end user. Actual vehicle weight and speed must be within a permissible range to receive the specific impact condition designation. The impact speed ratings are shown in the last column of Table 2.1, as taken from *ASTM F3016-19*.

Surrogate Test Vehicle Weight, Ib	Nominal Minimum Test Velocity mi/h	Permissible Speed Range, mi/h	Impact Speed Rating
5000 ±110	10	9.0-18.9	S10
	20	19.0-27.4	S20
	30	27.5-32.5	S30

Table 2.1. Impact Condition Designations According to ASTM F3016-19.

2.5 SURROGATE TEST VEHICLE

The surrogate test vehicle, or bogie, is modeled after an American Association of State Highway and Transportation Officials (AASHTO) *MASH* 2270P pickup truck. This vehicle represents the 90th percentile in terms of vehicle weight for all passenger vehicles sold in 2002. The surrogate test vehicle shown in Figures 2.1 was used for each crash test. Gross static weight of the vehicle was 4980 lb. The height to the lower edge of the vehicle front bumper was 17.25 inches, and the height to the upper edge of the front bumper was 29.25 inches. The height of the center of gravity was 28.0 inches. Appendix B gives additional dimensions and information on the vehicle. The vehicle was directed into each installation using a reverse-pull cable system and guidance cable. The vehicle was released and was unrestrained and free-wheeling 10 ft prior to impact.

Figure 2.1. Test Vehicle prior to Testing.

2.6 EVALUATION CRITERIA

According to *ASTM F3016-19*, up to two tests are recommended to evaluate a protective device. For the first test, the protective device is to be embedded in washed sand. This installation represents the situation where the protective device would be installed in a weak soil condition. This installation represents any situation where the protective device would be

installed in a strong soil condition or embedded within a pavement material such as asphalt or concrete. *ASTM F3016-19* provides guidelines that define a stiff concrete slab for testing. A second test is only required if the foundation's horizontal displacement at grade is greater than 1 inch when the protective device is tested in the washed sand. Alternatively, the protective device may be tested under a specific set of installation conditions whereby the Condition Designation/Penetration Rating are only valid if these conditions are met when installed in the field.

Dynamic penetration during the crash event includes the greater of the maximum dynamic displacement of any portion of the protective device into the protected area or the maximum dynamic penetration of any part of the surrogate test vehicle into the protected area referenced to the inside, protected side of the barrier. Penetration ratings according to *ASTM* F3016-19 are shown in Table 2.2.

Penetration Designation	Dynamic Penetration Rating
P1	≤ 1.0 ft
P2	1 ft - 4 ft
Failure	>4 ft

Table 2.2. Penetration Ratings According to ASTM F3016-19.

3 TEST ARTICLE DESIGN

3.1 TEST ARTICLE – DESIGN AND CONSTRUCTION

The installation consisted of a single 5-inch, schedule 40, brushed stainless steel, SlowStop® Bollard set into an elastomer base, which was secured with 6 anchor bolts to a steel reinforced concrete slab measuring 15 ft long, 12.5 ft wide, and 6 inches thick. The top of the bollard measured 42 inches above grade, and the bollard was <u>not</u> filled with concrete. This area slab was cast on top of native soil. Impact Recovery Systems, Inc.[®] provided the materials and the drawings of the bollard, and TTI Proving Ground provided the drawings for the foundation and installed the bollards for testing.

Figure 3.1 provides a general overview of the installation, and Figure 3.2 shows the completed installation. Further details on the installation may be found in Appendix C and Appendix D.

3.2 MATERIAL SPECIFICATIONS

Concrete compressive strength was 4760 psi for the foundation (4000 psi design strength), which was aged 31 days as of October 26, 2020. Concrete information is provided in Appendix E.

For further information on material specifications, certification documents are provided in Appendix E.

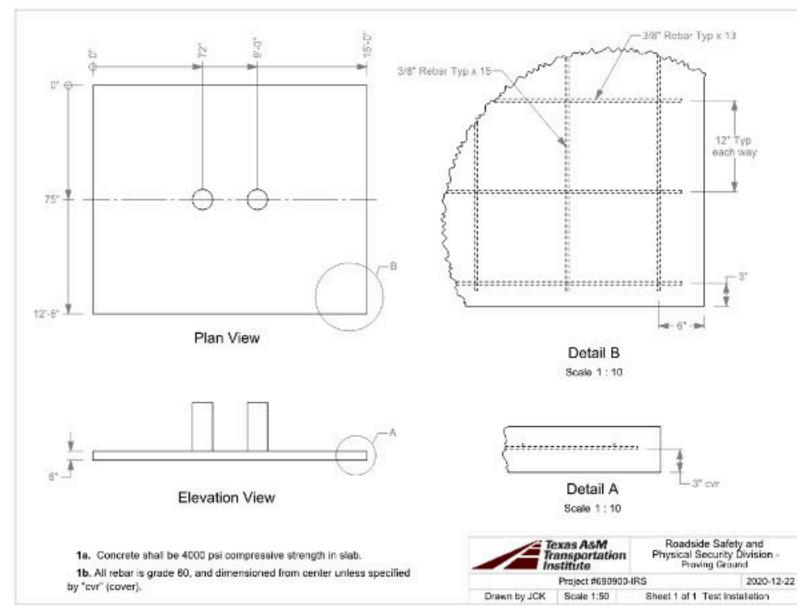


Figure 3.1. General Layout of SlowStop® Bollard.

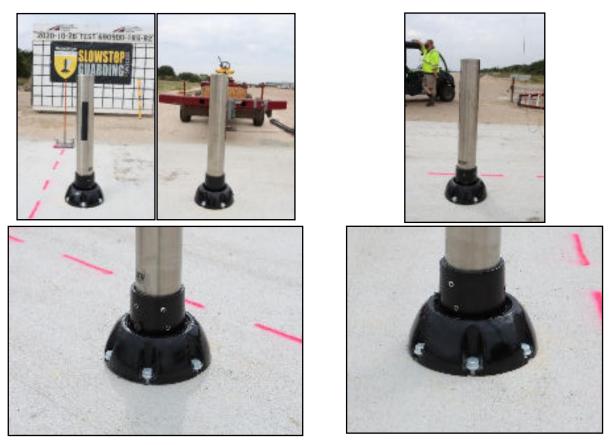


Figure 3.2. SlowStop® Bollard prior to Testing.

4 ASTM F3016-19 TEST S10 ON SLOWSTOP® BOLLARD (TEST NO. 690900-IRS B2)

4.1 TARGET TEST CONDITIONS

ASTM F3016-19 Test S10 was performed on the SlowStop® Bollard. Target speed was between 9.0 and 18.9 mi/h at an impact angle of 90 degrees, and target impact height of 28 inches. Actual impact speed was 10.4 mi/h and actual impact angle was 90.5 degrees, and impact height was 28.2 inches. Target and actual impact point was the centerline of the bogie aligned with the centerline of the bollard.

Figure 4.1. Bogie and Installation Geometrics for Test No. 690900-IRS B2.

4.2 WEATHER CONDITIONS

The crash test was performed the morning of October 26, 2020. Weather conditions at the time of testing were: Wind Speed: 5 mi/h; Wind Direction: 167 degrees (vehicle travelling at a heading of 170 degrees); Temperature: 74°F; Relative Humidity: 90 percent.

4.3 IMPACT DESCRIPTION

The surrogate vehicle was traveling at an impact speed of 10.4 mi/h when it impacted the bollard at an impact angle of 90.5 degrees. Table 4.1 lists events that occurred during Test No. 690900-IRS B2. Figure F.1 and F.2 in Appendix F.1 shows sequential photographs of the test period.

TIME	EVENTS
0.0000	Bogie impacts the bollard
0.2250	Bogie reaches maximum compression on honeycomb and maximum intrusion
0.2250	Bollard at maximum deflection
0.2460	Bogie begins to rebound
0.4688	Bogie loses contact with the bollard while traveling at 2.7 mi/h backwards

Table 4.1. Events during Test No. 690900-IRS B2.

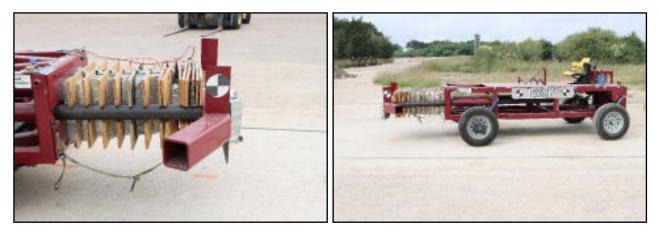
4.4 DAMAGE TO TEST ARTICLE

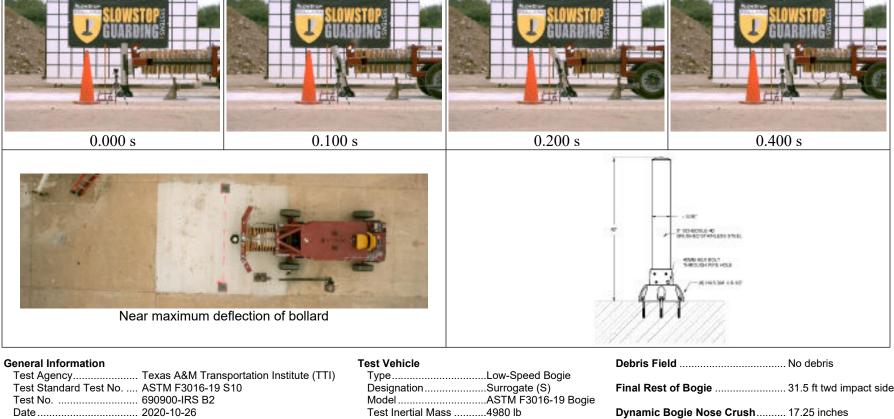
Figure 4.2 shows the damage to the bollard. The lean angle of the bollard was initially 89.5 degrees from horizontal to the protected side, and after the test, the bollard was 88.7 degrees from horizontal. Maximum dynamic deflection of the bollard during the test was 12.6 inches toward the protected side measured at the top of the bollard. The base of the bollard at grade showed only slight movement toward the protected side. The foundation around the base of the bollard was not cracked or spalled.

Figure 4.2. Installation after Test No. 690900-IRS B2.

4.5 VEHICLE DAMAGE

Damage to the vehicle is shown in Figure 4.3. Table 4.2 provides the honeycomb compression on the bogie. The initial overall length of the bogie's nose was 59.75 inches, and after impact it was 42.5 inches. Total crush of the honeycomb nose of the surrogate test vehicle was 17.25 inches. The maximum penetration of the vehicle was 9.8 inches, and it rebounded to 31.5 ft in front of the bollard. No debris from either the surrogate test vehicle or the test installation penetrated into the protected area.




Figure 4.3. Vehicle after Test No. 690900-IRS B2.

Thickness Before (inches)	Thickness After
Before (inches)	(in also a)
	(inches)
2.25	3.00 top –
5.25	0.75 bottom
2.50	0.13
2.25	0.13
2.25	0.25
2.38	0.38
3.25	0.50
3.13	1.00
3.13	1.50
3.25	1.50
3.00	3.00
3.00	3.00
3.00	3.00
3.13	3.13
3.13	3.13
3.00	3.00
3.00	3.00
	3.25 2.50 2.25 2.25 2.38 3.25 3.13 3.13 3.25 3.00 3.00 3.13 3.13 3.00 3.00 3.00 3.13 3.13 3.00 3.00

Table 4.2. Deformation of Honeycomb N	lose after Test No. 690900-IRS B2.
---------------------------------------	------------------------------------

4.6 OCCUPANT RISK FACTORS

Data from the accelerometer, located near the vehicle center of gravity, were digitized for informational purposes only. These data and other pertinent information from the test are summarized in Figure 4.4. Figures F.3 in Appendix F show vehicle acceleration versus time traces.

Test Article Type	Low Speed Bollard	Speed
Name	•	Occupant Risk
Material or Key Elements .	42-inch tall 5-inch schedule 40 brushed stainless steel bollard	Longitudinal C Lateral OIV Longitudinal F
Soil/Foundation Type	Steel reinforced 15-ft long, 12.5-ft wide, 6- inch thick concrete slab on native soil	Lateral RDA Max. 0.050-s Av Longitudinal

Designation	Surrogate (S)
Model	ASTM F3016-19 Bo
Test Inertial Mass	4980 lb
Impact Conditions	
Speed	10.4 mi/h
Angle	90.45 degrees
Occupant Risk Values	-
Longitudinal OIV	17.7 ft/s
Lateral OIV	0.7 ft/s
Longitudinal RDA	0.8 g
Lateral RDA	0.2 g
Max. 0.050-s Average	-
Longitudinal	−3.4 g
Lateral	0.2 g
Vertical	0.4 g

Debris Field	No debris
Final Rest of Bogie	31.5 ft twd impact side
Dynamic Bogie Nose Crush	17.25 inches
Rotation/Translation of Bollard (static after impact)	1 degree (bollard 88.7° fr Horiz)
Horizontal Movement of Foundation Uplift of Foundation	None
Dynamic Penetration of Bollard Dynamic Penetration of Bogie Penetration Rating	9.8 inches

2020-12-23

Figure 4.4. Summary of Results for ASTM F3016-19 Test S10 on SlowStop[®] Bollard.

15

5 SUMMARY AND CONCLUSIONS

5.1 ASSESSMENT OF TEST RESULTS

ASTM F3016-19 Test S10 on SlowStop[®] Bollard (Test No. 690900-IRS B2)

The 4980-lb (5000-lb nominal) surrogate test vehicle impacted the bollard at 90.5 degrees with the centerline of the vehicle aligned with the centerline of the bollard. The acceptable range for impact speed for this S10 test was 9.0-18.9 mi/h, and the actual impact speed was 10.4 mi/h. Maximum dynamic penetration of the bollard during the test was 12.6 inches toward the protected side measured at the top of the bollard, and the maximum penetration of the vehicle was 9.8 inches. After impact, the bollard was leaning 89 degrees from horizontal toward the protected side. No movement of the base or foundation was observed, and there was no debris from the vehicle or bollard.

5.2 CONCLUSIONS

ASTM F3016-19 provides a range of Condition Designations and Penetration Ratings that allow agencies to select protective devices that satisfy their specific facility needs. The amount of dynamic penetration of the protective device or surrogate test vehicle at the required impact velocity determines the dynamic Penetration Rating for each Condition Designation.

During the S10 test, the maximum penetration of the vehicle was 9.8 inches, and the maximum dynamic penetration of the bollard was 12.6 inches. According to *ASTM F3016-19*, the bollard design met the Condition Designation/Penetration Rating of S10-P2, which allows penetration of 1-4 ft when impacted by the surrogate test vehicle at an impact speed of 9.0-18.9 mi/h.

REFERENCES

1. "Standard Test Method for Surrogate Testing of Vehicle Impact Protective Devices at Low Speeds," *ASTM Designation: F3016-19*, American Standards for Testing Materials International, West Conshohocken, PA, 2019.

APPENDIX A. CRASH TEST PROCEDURES AND DATA ANALYSIS

The crash test and data analysis procedures were in accordance with guidelines presented in *ASTM F3016-19*. Brief descriptions of these procedures are presented as follows.

A.1 ELECTRONIC INSTRUMENTATION AND DATA PROCESSING

The surrogate test vehicle was instrumented with a self-contained, on-board data acquisition system. The signal conditioning and acquisition system is a 16-channel, Tiny Data Acquisition System (TDAS) Pro produced by Diversified Technical Systems, Inc. The accelerometers, which measure the x, y, and z axis of vehicle acceleration, are strain gauge type with linear millivolt output proportional to acceleration. Angular rate sensors, measuring vehicle roll, pitch, and yaw rates, are ultra-small, solid state units designed for crash test service. The TDAS Pro hardware and software conform to the latest SAE J211, Instrumentation for Impact Test. Each of the 16 channels is capable of providing precision amplification, scaling, and filtering based on transducer specifications and calibrations. During the test, data are recorded from each channel at a rate of 10,000 values per second with a resolution of one part in 65,536. Once data are recorded, internal batteries back these up inside the unit should the primary battery cable be severed. Initial contact of the pressure switch on the vehicle provides a time zero mark and initiates the recording process. After each test, the data are downloaded from the TDAS Pro unit into a laptop computer at the test site. The Test Risk Assessment Program (TRAP) software then processes the raw data to produce detailed reports of the test results.

Each of the TDAS Pro units is returned to the factory annually for complete recalibration and all instrumentation used in the vehicle conforms to all specifications outlined by SAE J211. All accelerometers are calibrated annually by means of an ENDEVCO[®] 2901, precision primary vibration standard. This standard and its support instruments are checked annually and receive a National Institute of Standards Technology (NIST) traceable calibration. The rate transducers used in the data acquisition system receive a calibration via a Genesco Rate-of-Turn table with strobe. The subsystems of each data channel are also evaluated annually, using instruments with current NIST traceability, and the results are factored into the accuracy of the total data channel, per SAE J211. Calibrations and evaluations are also made any time data are suspect. Acceleration data is measured with an expanded uncertainty of ± 1.7 percent at a confidence factor of 95 percent (k=2).

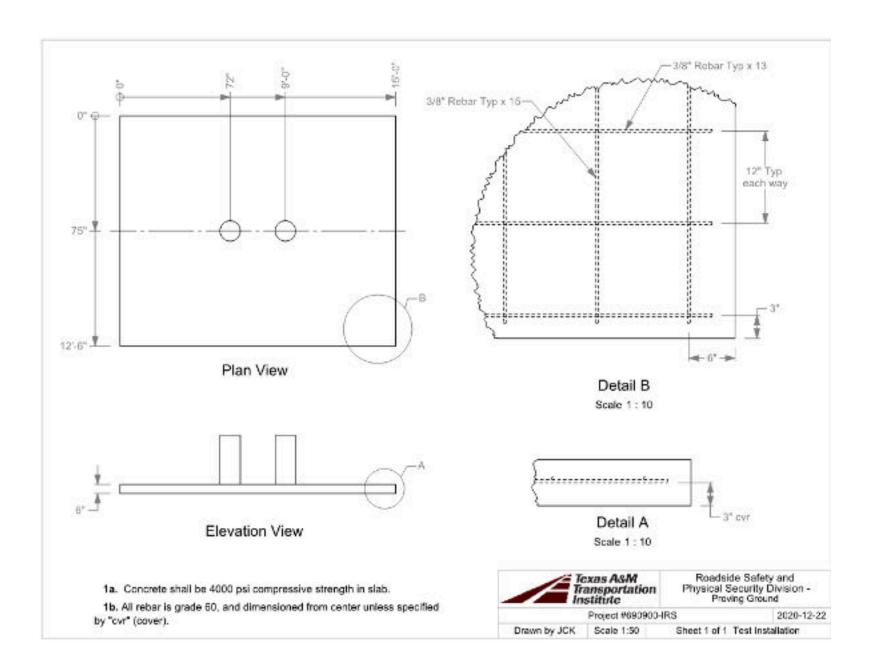
TRAP uses the data to compute occupant/compartment impact velocities, time of occupant/compartment impact after vehicle impact, and the highest 10-millisecond (ms) average ridedown acceleration. In addition, maximum average accelerations over 50-ms intervals in each of the three directions are computed. For reporting purposes, the data from the vehicle-mounted accelerometers are filtered with a 60-Hz low-pass digital filter, and acceleration versus time curves for the longitudinal, lateral, and vertical directions are plotted using TRAP.

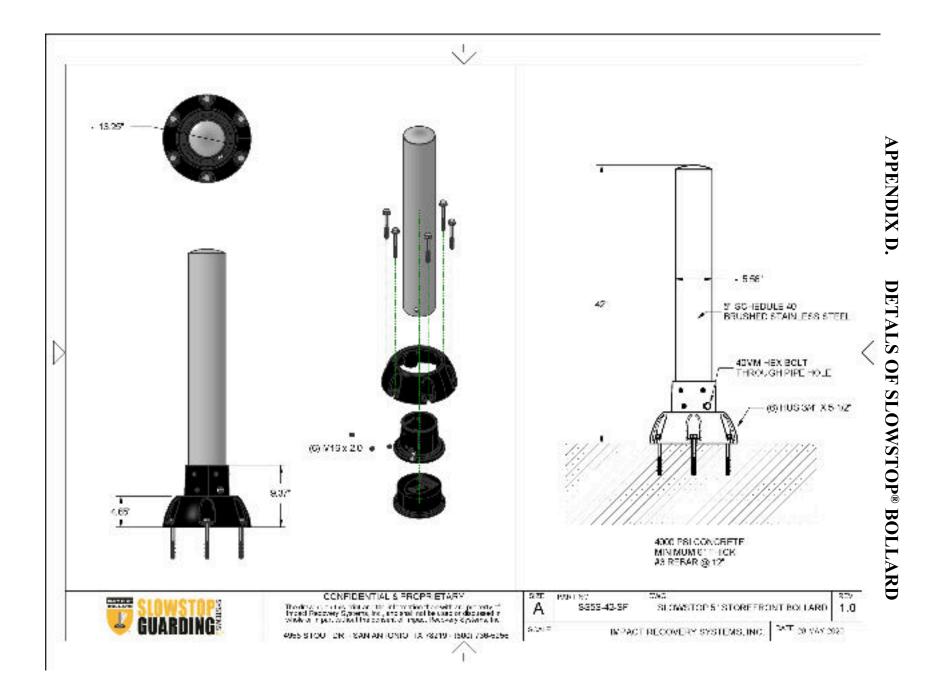
A.2 PHOTOGRAPHIC INSTRUMENTATION AND DATA PROCESSING

Photographic coverage of each test included three digital high-speed cameras:

- One overhead with a field of view perpendicular to the ground and directly over the impact point;
- One placed to have a field of view parallel to and aligned with the installation at the downstream end; and
- A third placed to have a field of view perpendicular to impact path and aligned with the P1 distance line.

A flashbulb on the impacting vehicle was activated by a pressure-sensitive tape switch to indicate the instant of contact with the bollard. The flashbulb was visible from each camera. The video files from these digital high-speed cameras were analyzed to observe phenomena occurring during the collision and to obtain time-event, displacement, and angular data. A digital camera recorded and documented conditions of each test vehicle and the installation before and after the test.


A.3 TEST VEHICLE PROPULSION AND GUIDANCE


The surrogate test vehicle was towed into the test installation using a steel cable guidance and reverse tow system. A steel cable for guiding the test vehicle was tensioned along the path, anchored at each end, and threaded through an attachment to the front wheel of the test vehicle. An additional steel cable was connected to the test vehicle, passed around a pulley near the impact point, and then anchored to the tow vehicle such that the tow vehicle moved away from the test site. A one-to-one speed ratio between the test and tow vehicle existed with this system. The test vehicle was released to be free-wheeling and unrestrained greater than 10 ft prior to impact. The vehicle remained free-wheeling, i.e., no steering or braking inputs.

APPENDIX B. TEST VEHICLE PROPERTIES AND INFORMATION

2020-10-26 690900-IRS1 &2 Date: Test No.: Model No.: ASTM F3016-14 65 PSI 225/75R15 Tire Inflation Pressure: Tire Size: Describe any damage to the vehicle prior to test: E D х н W G M N 0 6 P Q ĸ R S Geometry: inches 71.00 17.25 39.50 69.75 28.00 ĸ P U A F 59.00 24.25 28.00 20.25 10.50 в G L Q ٧ 44.00 24.54 16.25 100.00 10.25 С H М R w 43.37 142.00 15.00 24.25 28.00 D I. N s х 100.00 29.25 23.00 16.00 14.75 E 0 J. т Y Mass Distribution: 1390 1430 1070 1090 LF: RF: LR: RR: lb Mass: Ib Gross Static Miront 2820 2160 Mourt 4980 Milotal

Table B.1. Vehicle Properties for ASTM F3016-19 Surrogate Bogie Vehicle.

SLOWSTOP* STOREFRONT BOLLARD DETAILED INSTALLATION INSTRUCTIONS

www.slowstop.com/resources/installation

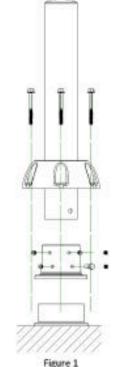
Materials 1—Base 1—Elastomer 1—Adapter with Set-Screws 1—Bollard Pipe 6—Anchors Tools Required Hammer Drill 3/4" Hammer Drill Bit Impact Wrench 1-1/8" Impact Socket Vacuum or Compressed Air with Nozzle 8mm Allen Wrench Adjustable Wrench

Notes

- 1. Assembly and installation should be performed by qualified personnel only.
- 2. Installation to be performed in unbroken concrete only. Anchor holes should be 5" from any edge.
- 3. Bollards must be properly sized for expected loads and speeds. Consult www.slowstop.com.
- 4. Study Figure 1 to understand the arrangement of all parts.
- 5. Pipe used must be as specified by SlowStop.

Installation and Assembly

- Layout and mark final location using the base as a guide. Remove base. Note: Keep the bollard 0.32 x height away from any solid object to allow for tilting.
- 2. Place the elastomer in the center of the location and place adapter on top of elastomer.
- 3. Fit base over the adapter so that it rests on the adapter flange and covers the elastomer.
- Again using the base as a guide, drill six holes at least 5-1/2" deep. Clean out the holes from concrete dust.
- Tighten the concrete screw Anchors in a star pattern, compressing the elastomer and making the base flush to the concrete. Anchor head must be tightened flush to base.
- 6. Insert the tube into the adapter and align the pipe hole with one screw hole. Insert and tighten the 40mm hex screw through the adapter and that hole. Firmly tighten the rest of the set-screws.
- 7. When complete, the assembly should appear like Figure 2.


Note: Do not concrete fill the bollard. The system is designed for the pipe to be the first point of bending

SLOWSTOP® BOLLARDS BY SLOWSTOP GUARDING SYSTEMS, LLC WORLDWIDE PATENTS AND PATENTS PENDING Rev. A005/20)

WWW.SLOWSTOP.COM (210)735-4477

Figure 2

1 51	STEEL TEXAS EEL MILL DRIV JIN TX 78166	E	0	CERTIFIED MILL TES For edditional cap 930-372-87	iez (_		Quality Assure	Extende A Cavita
EAT NO.:3098967 SECTION: REBAR 10MM (08) SRADE: ASTM A615-20 Gr 4 ROLL DATE: 09/01/2020 NELT DATE: 09/02/2020 Cert. No.: 63200341 / 09896	20/60	S O L D T O	1. a a	-7850	S H P T O		Child Construction Svos C 10560 State Newy 30 College Station TX US 77845-7950 979 774 5900	iollege Staci	Delivery#: 83200341 BOL4: 73758772 CUST PO4: 861133 CUST P/N: DLVRY LBS / HEAT: 4212.000 LB DLVRY PCS / HEAT: 560 EA
Charaoteris	tia Value	-		Characteristic	Valu	Ué	1	Charac	teristic Value
	C 0.46% In 0.74% P 0.010% S 0.034% SI 0.20% Cu 0.31% Cr 0.10% N0 0.11%			Bend Test Dier	naţe		1.313IN		
	An 0.034% V 0.000% Sb 0.003% Sn 0.011%							"Mangolas la Dody "700% mathematik "61/19294-2004	nd Johnd in Jhe USA 3.7 comakeet
Yeeld Strength tes Tanaile Strength tes Elongation ess	1 130.1ks 1 14%	i	A.					*éducada: taren in af she plear qui Weets Me "Buy	icure conternation sequetauxe with the breat weaton http:menoel America" sequencents of 23 C+M636 410, 48 CMR 68
Elongation Gage Loth test Tensile to Yield retio ten Bend Tes	1 1.52							Assum to the S	neriser son onzons ven zu chemistik which an lare of California to cause cancer. Beth politers which have. For more information go nings, cat gav

RÉMARAS :

Page 1 OF 1 09/02/2020 13:35:15

29

TR No. 690900-IRS B1&B2

1 STEEL	EL TEXAS MILL DRIVE IX 78155-7)	CERTIFIED MILL TES For additional cop 830-372-87	vies c	ar sector.	accurate and conf	ify that the test results presented here orm to the reported grade specification
HEAT NO.:3100064 SECTION: REBAR 13MM (#4) 20'0 GRADE: ASTM A616-20 Gr 420/6 ROLL DATE: 09/16/2020 MELT DATE: 09/16/2020 Cert. No.: 83214280 / 100064A1:	ю	S O L D T O		F7950	S H I P T O	CMC Construction Svo 10850 State Hwy 30 College Station TX US 77845-7950 979 774 5900	s College Stati	Delivery#: 83214280 BOL#: 73778492 CUST PO#: 862367 CUST P/N: DLVRY LBS / HEAT: 48202.000 LB DLVRY PCS / HEAT: 3608 EA
Characteristic	Value			Characteristic	Valu	0	Chara	cteristic Value
C Mn P S Si Cu Cu	0.44% 0.87% 0.009% 0.041% 0.20% 0.27% 0.14%			Bend Test Diar		r 1.750IN		
Ni Mo V Cb Sn	0.10% 0.042% 0.000% 0.001% 0.008% 0.000%						*Material is Kell * 100% method	and rollert in the USA 4 3: 1 complaint
Yield Strength test 1 Tensile Strength test 1 Elongation test 1 Elongation Gage Lgth test 1 Tensile to Yield ratio test 1 Bend Test 1	65.7ksi 104.2ksi 13% 8IN 1.59 Passed						"Manufactured of the plant of "Meets the "Bu "Warning. The known to the or other mpro-	Annowy containination in accordance with the latest version widdy manage by America'' requirements of 23-579635-410, 49 GFR 5 product son expose you to charnicale which are State of California to cause cancer, hith defects ductive hero. For more information go feetings.cs.ager

REMARKS :

Proving Stre and 2020-02-02-020 Heart 122-02870	Texas A&M Transportation Institute Tempose to compare Management and ality Formo	e Prepared by:	7.3-01-Concret Samplingt: Wards-L. Menger/	C Dec. No.¶ ¶ QF 7 8-0/n fit	Lissue-Date:++ ++				
	tained in this document is o	onfidential to TTI Provin;	Ground.		14(12				
Project No:	630900-IRS	Casting Date	: 9/25/2020	Mix Design (psi):	4000 psi				
Name of Technician Taking Sample		con	Name of Technician Breaking Sample		Teracon				
Signature of			Signature of						
Technician Taking Sample		COF	Tedinician Creaking Sampla <u>leracon</u>						
Load No.	Truck No.	Ticket No.	Locat	ion (from concrete	e map)				
11	7212	6300513		100% of slab					
Load No.	Break Date	Cylinder Age	Total Load (lbs)	Break (psi)	Average				
		See attached Rep	orts from Terracon						

			ER'S COPY		TICK	ET NO.
Mart Marie	in itta	Suite	Marietta J Freeway e 400 Tx 75234	a	1	
1010 500		a second	in huin	NULL NULL		1
LOAD TIME TO JO	36 12	JOB SITE BEOIN	1761	SH POUN	LEAVE JOB SITE	ARRIVE PLAN
4:	100	.06 /	40	:	:	
ATER ADDED ON JOB AT CUS	TOMER'S REQUES	TGAL	CURTOMER SIGNATU	HE.		
LLOWABLE WATER (withhold th EST CYLINDER TAKEN CI YES	m batch)	S. Z GAL	x		and the second	
	TO THIS CONCE ADDED IN FXC	ETF WILL BEDLICE	CONDITIONS O SIGNATURE AS	IN THE REVI	RIALS IS SUBJECT ERSE SIDE HEREO	TO THE TERMS
STOMEN NAME AND DELIVERY AD	ISA. SRESS					
TETATI A A PALLING	10007	A CONTRACTOR	PLANT INUCK	ORDER NO.		WOOLOY GRED
		the state of the	OFFICERNAME		Contraction of the	DATE DATE
		The second	DHIHILLS			
		1	CUSTOMER NUMBER	PROJECT	DUM, OTY	CHOERED ON
n-oo cype	DESCRIPTION	Collin, PEB, Provenue PRE 10001 - Execution	103630 00, fm	ANNOI	UNIT PRICE	AMOUNT
Train CADR	19250528	Parlian Long	103630 No. fre		and the second s	and the second se
CIAL DELIVERY RETRUCTIONS	THE STREET	PRETON CHA	AT DID	SALES	UNIT PRICE	and the second se
	LEDNATED, HILL YOU	FILLINGT LAND	AT DID	SALES	UNIT PRICE	AMOUNT

CONCRETE COMPRESSIVE STRENGTH TEST REPORT

85

77

148.8

Report Number: A1171057.0142 Service Date: 09/25/20 Report Date: 09/29/20 PO #690900-IRS Task:

Client				Project						
Texas Transpo	rtation Institu	te		Riverside Campus						
Attn: Gary Ge	rke			Riverside Campus Bryan, TX						
TTJ Business (Office									
3135 TAMU										
College Statio	n, TX 77843-	3135		Project Number: A1171057						
Material Inf	ormation			Sample Information						
Specified Strength: 4,000 psi @ 28 days				Sample Date:	09/25/20	Sample Time:	1306			
				Sampled By:	Jonathan Whitmore Clear, No Wind					
Mix 1D:	R9Z40528			Weather Conditions:						
Supplier:	Martin Marie	sta		Accumulative Yards:	8/8	Batch Size (cy):	8			
Batch Time:	1223	Plant:	617	Placement Method:	Direct Discharge 0					
Truck No.:	7212	Ticket No.:	6300513	Water Added Before (gal):						
				Water Added After (gal):	0					
Field Test D	Field Test Data			Sample Location:	Bollards					
Test		Result	Specification	Placement Location:	690900-1RS					
Slump (in):		6 1/4	Not Specified							
Air Content (%):	1.1	Not Specified							

40 - 95 40 - 95

Not Specified

Ambient Temp. (F): Plastic Unit Wt. (pef): Yield (Cu. Yds.):

Concrete Temp. (F):

Laboratory Test Data

						Age at	Maximum	Compressive		
Set	Specimen	Avg Diam.	Area	Date	Dute	Test	Load	Strength	Fracture	Tested
No.	ID	(in)	(sq in)	Received	Tested	(days)	(lbs)	(psi)	Type	By
1	A	6.00	28.27		10/26/20	31 F	136,340	4,820	1	SLS
1	в	6.00	28.27		10/26/20	31 F	133,510	4,720	2	SLS
1	С	6.00	28.27		10/26/20	31 F	134,060	4,740	2	SLS
1	D					Hold				
Initial (Cure: Outsi	de		Final Cu	re: Field Cu	red				
Course and	ontes IP – I	Record Vision 2								

Comments: F - Field Cured

Samples Made By: Terracon

Obtain samples of fresh concrete at the placement locations (ASTM C 172), perform required field tests and cast, cure, and Services: test compressive strength samples (ASTM C 31, C 39, C 1231).

Terracon Rep.: Jonathan Whitmore Reported To:

Contractor:

Report Distribution:

(1) Texas Transportation Institute, Gary Gerke (1) Terracon Consultants, Inc., Ales Danigue, P.E. (1) Texas Transportation Institute, Bill Oriffith

Reviewed By:

Start/Stop: 1230-1330

 \sim Hexander Bunigan

Project Manager

Test Methods: ASTM C 31, ASTM C143, ASTM C231, ASTM C1064

The tests were performed in general accordance with applicable ASTM, AASHTO, or DOT test methods. This report is exclusively for the use of the client indicated above and shall not be reproduced except in full without the written consent of our company. Test results transmitted herein are only applicable to the actual samples tested at the location(s) referenced and are not necessarily indicative of the properties of other apparently similar or identical materials.

CR0001, 11-16-12, Rev.6

Page 1 of 1

33

APPENDIX F. ASTM F3016-19 TEST S10 ON SLOWSTOP® BOLLARD

F.1 SEQUENTIAL PHOTOGRAPHS

0.000 s

0.100 s

0.400 s

0.500 s

0.600 s

0.300 s 0.700 s Figure F.1. Sequential Photographs for Test No. 690900-IRS B2 (Perpendicular View).

TR No. 690900-IRS B2

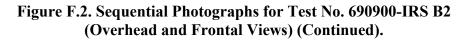
0.100 s

0.200 s

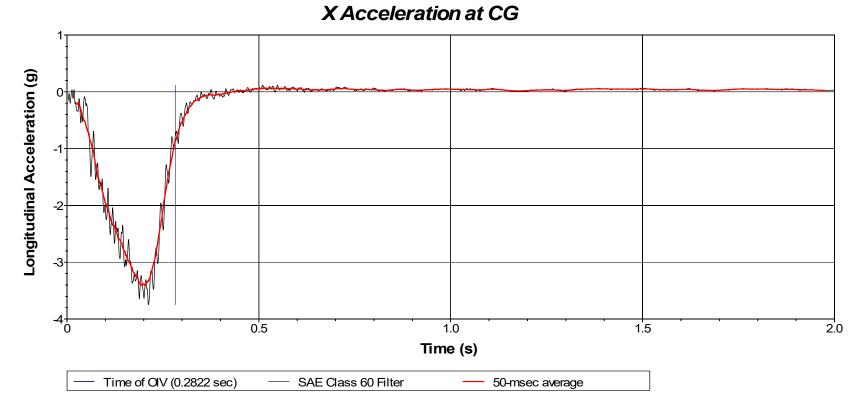
0.000 s

Figure F.2. Sequential Photographs for Test No. 690900-IRS B2 (Overhead and Frontal Views).

0.300 s


0.500 s

0.600 s



0.700 s

Test Number: 690900-IRS B2 Test Standard Test Number: ASTM F3016-19 Test S10 Test Article: SlowStop[®] Bollard Test Vehicle: 4980 lb Inertial Mass: 4980 lb Impact Speed: 10.4 mi/h Impact Angle: 90.5 degrees **F.3**.

VEHICLE ACCELERATIONS

Figure F.3. Vehicle Longitudinal Accelerometer Trace for Test No. 690900-IRS B2 (Accelerometer Located at Center of Gravity).

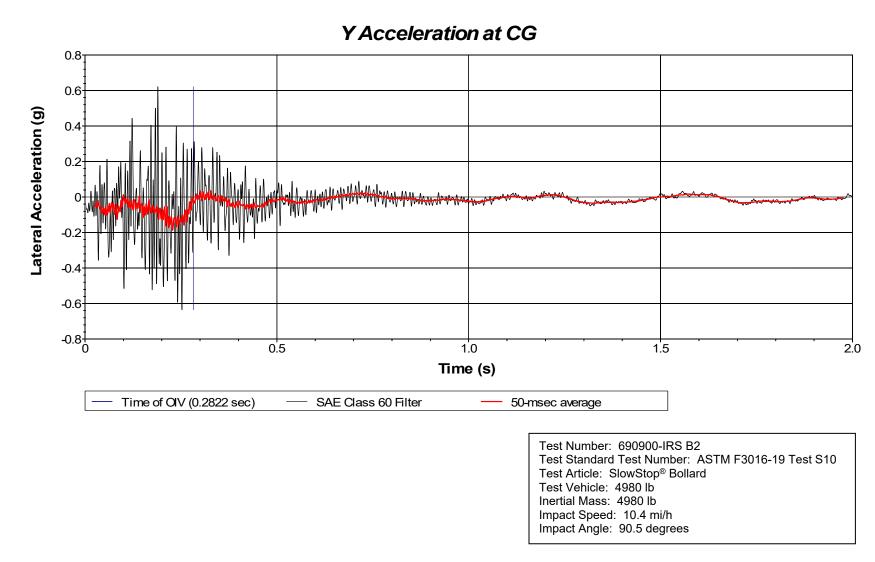


Figure F.4. Vehicle Lateral Accelerometer Trace for Test No. 690900-IRS B2 (Accelerometer Located near Center of Gravity).

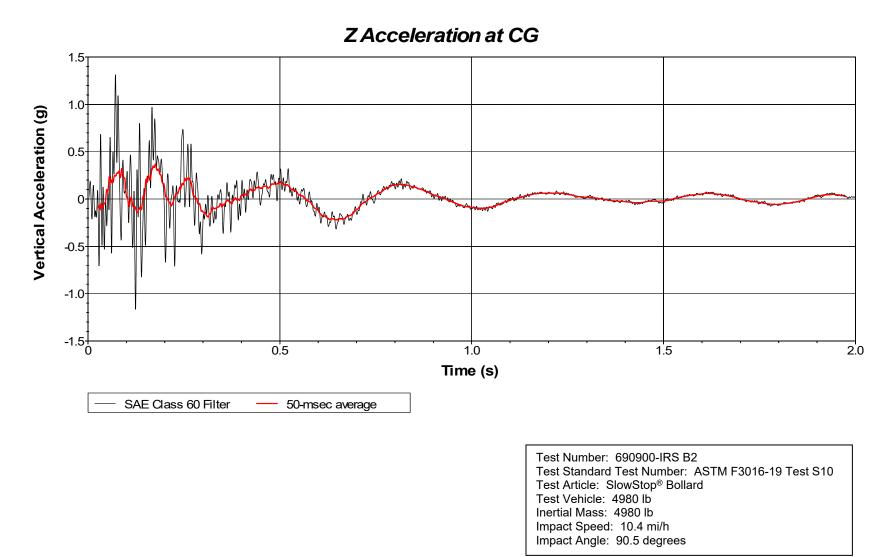


Figure F.5. Vehicle Vertical Accelerometer Trace for Test No. 690900-IRS B2 (Accelerometer Located near Center of Gravity